Conic Sections Explorer

General quadratic → rotation/translation → standard form। ধাপে ধাপে কাজের সাথে focus, directrix ও asymptote ভিজুয়ালাইজ করুন।

অন্যান্য ভাষা: ja | en | zh-CN

Calculator

Diagram

ফলাফল

How it’s calculated

    Teacher Notes

    FAQ

    How do I classify a conic from Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0?

    Use the discriminant Δ=B^2−4AC. If Δ<0: ellipse (A=C ⇒ circle), Δ=0: parabola, Δ>0: hyperbola.

    How is the rotation angle chosen?

    We use θ = ½·atan2(B, A−C) to eliminate the xy term, then round tiny residuals to zero for numerical stability.

    How do I obtain the standard form and parameters (a, b, p)?

    After rotation, solve [2A' B'; B' 2C']·[X0;Y0] = −[D';E'] to find the center (or vertex). Translate to remove linear terms and normalize to circle/ellipse/hyperbola forms; for a parabola, complete the square to identify p in u^2=4pv.

    How are foci, directrices, and asymptotes computed?

    Ellipse: c=√(|a^2−b^2|), e=c/max(a,b); directrices are at ±a/e along the major axis. Hyperbola: c=√(a^2+b^2), e=c/a; asymptotes v=±(b/a)u mapped back after rotation/translation. Parabola u^2=4pv has focus (0,p) and directrix v=−p.

    Can I share or export my results?

    Yes. Use URL কপি to share inputs, Copy LaTeX for formulas, and Export CSV for sampled points from the plotted curve.